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An important problem in approximation theory is to characterize the
Lipschitz space Lip 1, namely, the subspace of the space C2'ir (of 27T-periodic
continuous functions with the usual norm) consisting of those 1satisfying

w(t,f) = sup Il/e + h) - fOil = OCt)
Ihkt

(t -> 0+),

by approximation theoretical statements (see, e.g., [1,6, 7) for character
izations by linear approximation processes). In view of the classical theorems
of Jackson, Bernstein and Zygmund it would be interesting to characterize
Lip 1 directly in terms of the best approximation

(IE C2r.; n = 1,2,...),

Tn denoting the class of all trigonometric polynomials of degree :s;; 11. In
this respect it is well known [3} that

(i) g(x) = 47T i sin xi E Lip I; En(g) ;;, l/n,

(ii) hex) = I k-2 sinkxif Lip 1; E,,(h):S;; Ifll.
I

This shows that the two sets

{IE C2'ir :/E Lip I}, (fE C2rr : En(f) = O(l/n)}

are not equal (further investigations in this direction were made in [2, 5]).
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Our observation is that the examples (i) and (ii) also preclude any
reasonable characterization of the form

Lip I = C", == {fE C2'11 : cI>(En(f» < oo} (*)

with cI> a (real-valued) functional defined on the class of all sequences of
non-negative reals. By "reasonable" we mean that cI> should be such that
in case fo E C"" all elements f E C2'11 with better behavior of best approxi
mation, i.e., E,,(f) :(; En(lo), will belong to C"" too. Since, by a familiar
theorem of Bernstein, {E,,(f)} or {E,,(fo)} can be any nonincreasing sequence
tending to zero, this amounts to assuming monotonicity of cI>, namely,

(**)

Now, if a characterization (*), with cI> satisfying (**), were valid, in view of
the inequality En(h) :(; l/n :(; En(g), g E Lip 1 would imply that cI>(En(h» :(;
cI>(E,,(g» < 00, and thus hE Lip 1. But this contradicts (ii). Thus:

There is no characterization of Lip 1 of the form (*) with a monotone
functional cI> satisfying (**).

Let us apply this fact to particular examples of cI>. Let cp, ifi be any positive
continuous functions on [0, 00), with ifi nondecreasing. For every {an}:f with
an ?': °set

I 00 /l/q
cI>q.¢,.p(an) = I'~l [cp(n) ifi(a"W\ (1 :(; q < 00),

cI>",,¢..,la,,) = sup [cp(n) ifi(an)] (q = (0).
l<n<OCl

Then the cI>q,<b,W are monotone functiona1s in the sense of(**). In case q = 00,
cI>oo.<b,.p(E,,(f» < 00 is equivalent to ifi(En(f» = O(cp(n)-l). So we obtain,
e.g., that ifi(En(f» = O(cp(n)-l) cannot be a characterization of the class
Lip 1.

Similar considerations show that it is also impossible to characterize higher
order Lipschitz spaces Lip r. On the other hand, a characterization of Lip r
is possible via best approximation by splines [4].
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